
Deep Learning HDL Toolbox™ Release Notes

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Deep Learning HDL Toolbox™ Release Notes
© COPYRIGHT 2020—2022 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

R2022a

Generated deep learning processor IP core integration with other IP
cores . 1-2

Generated deep learning processor deployment without a MATLAB
connection . 1-2

Network custom layer creation, registration, validation, and deployment
. 1-2

Updates to deep learning network layeractivations results 1-2

Updated supported layers and networks . 1-2

Functionality being removed or changed . 1-3
adder module ofdlhdl.ProcessorConfig object has been renamed 1-3

R2021b

Trimmed deep learning processor configuration . 2-2

Generic deep learning processor generation . 2-2

Custom reference design functionality for custom boards for deep
learning processor IP core integration . 2-2

Deep learning processor streaming handshake modes 2-2

Updates to estimatePerformance . 2-3

Updates to estimateResources . 2-3

Enhancements for quantization of directed acyclic graph (DAG) networks
. 2-3

Network prototyping and validation without hardware 2-4

Updated supported layers . 2-4

iii

Contents

Functionality being removed or changed . 2-4
KernelDataType property ofdlhdl.ProcessorConfig object has been removed

. 2-4
LUT property ofestimateResources function has been removed 2-4

R2021a

Custom directed acyclic graph (DAG) network support 3-2

Performance estimation and profiling . 3-2

Resource estimation . 3-2

Updated supported layers . 3-2

MATLAB Emulation for validate method of dlquantizer object 3-3

dlhdl.Workflow name-value argument pair update 3-3

Updates to supported software . 3-3

Functionality being removed or changed . 3-3
estimate function for dlhdl.Workflow object has been removed 3-3
'ProcessorConfig' option in dlhdl.Workflow has been removed 3-3

R2020b

Introducing Deep Learning HDL Toolbox: Prototype and implement deep
learning networks on FPGAs and SoCs . 4-2

Prototype on FPGAs . 4-2

Custom series network support . 4-2

Portable Verilog and VHDL code . 4-2

Tune user-configurable parameters . 4-2

Custom board support . 4-2

Performance estimation and profiling . 4-2

Hardware Support . 4-2

Support Package for Intel FPGA and SoCs . 4-3

iv Contents

Support Package for Xilinx FPGA and SoCs . 4-3

v

R2022a

Version: 1.3

New Features

Bug Fixes

Version History

1

Generated deep learning processor IP core integration with other IP
cores
In R2022a, interface the generated deep learning processor IP core with other IP cores by specifying
the base input and output addresses for the generated deep learning processor IP core. You can
specify the addresses through network registers or direct port connections. Before changing the
InputStart signal, specify the base input and output address. See “Interface with the Deep
Learning Processor IP Core”.

Generated deep learning processor deployment without a MATLAB
connection
In R2022a, you can use the Deep Learning HDL Toolbox to deploy your network-associated weights,
biases, and instructions to a custom binary file. To parse the custom binary file and initialize the
target memory, use a utility to program the deep learning processor IP core without a MATLAB®

connection. See “Initialize Deployed Deep Learning Processor Without Using a MATLAB Connection”.

Network custom layer creation, registration, validation, and
deployment
In R2022a, you can use the Deep Learning HDL Toolbox to create, register, validate, and deploy your
network that has custom layers to your target hardware device. See “Create Deep Learning
Processor Configuration for Custom Layers”.

Deep Learning HDL Toolbox does not support:

• Resource estimation for the deep learning processor configuration that has registered custom
layers.

• Performance estimation of networks that have custom layers.

Updates to deep learning network layeractivations results
The activation results have been updated in R2022a. You can retrieve deep learning network
intermediate layer results for:

• The Image Input layer.
• Two output Maxpool layers. When you retrieve activation results for the outputs of a Maxpool

layer that has the HasUnppolingIndices argument set to true, the only supported output is
out.

• Two output Max Unpooling layers.

See activations.

Updated supported layers and networks
In R2022a, Deep Learning HDL Toolbox supports these layers:

• Sigmoid
• Transposed convolution 2D

R2022a

1-2

• Max unpooling

For int8 data type quantization, Deep Learning HDL Toolbox supports these layers:

• Sigmoid
• Transposed convolution 2D

In R2022a, Deep Learning HDL Toolbox supports:

• A max pooling 2D layer that has the HasUnpoolingOutputs set to true.
• 1-by-N and N-by-1 size filters.
• Nonsquare size filters.

Deep Learning HDL Toolbox optimizes nonsymmetric stride sizes by converting them to symmetric
stride sizes that produce an equivalent result.

In R2022a, Deep Learning HDL Toolbox implements the normalization parameter of the image input
layer on hardware. Deep Learning HDL Toolbox supports only these normalizations for hardware
implementation:

• zerocenter
• zscore

See “Image Input Layer Normalization Hardware Implementation”.

In R2022a, Deep Learning HDL Toolbox supports these networks:

• U-Net
• Reduced U-Net
• PoseNet. See “Human Pose Estimation by Using Segmentation DAG Network Deployed to FPGA”.
• SegNet
• Speech Command Recognition. See “Speech Command Recognition by Using FPGA”.
• Modulation Classification. See “Modulation Classification by Using FPGA”.

For int8 data type quantization, Deep Learning HDL Toolbox supports these networks:

• U-Net
• Reduce U-Net
• PoseNet

Functionality being removed or changed
adder module ofdlhdl.ProcessorConfig object has been renamed
Behavior change

This property has been renamed to custom.

1-3

R2021b

Version: 1.2

New Features

Bug Fixes

Version History

2

Trimmed deep learning processor configuration
Generate a resource-optimized deep learning processor IP core and bitstream that suit your custom
convolution module layers only or fully connected module layers only networks. Generate the
optimized deep learning processor IP core and bitstream by removing the convolution, fully
connected, or adder modules from the deep learning processor configuration. To remove the modules:

• Set the ModuleGeneration property to off.
• Use the optimizeConfigurationForNetwork function.

To further optimize your processor configuration:

• Remove the Local Response Normalization (LRN) block from the processor configuration by
setting the LRNBlockGeneration property to off.

• Remove the Softmax block from the processor configuration by setting the
SoftmaxBlockGeneration property to off. When you set this property to off, the Softmax
layer is still implemented in software.

See Generate Custom Bitstream to Meet Custom Deep Learning Network Requirements.

Generic deep learning processor generation
Generate a custom generic deep learning processor IP core by specifying Generic Deep Learning
Processor for the TargetPlatform property of the dlhdl.ProcessorConfig object. Integrate
the generated IP core with your larger FPGA design. You can:

• Specify a name for your project folder by using the ProjectFolder name-value argument.
• Name your deep learning processor IP core by using the ProcessorName name-value argument.
• Specify HDL code generation options, such as target language for the generated HDL code, by

using the HDLCoderConfig name-value argument.

Custom reference design functionality for custom boards for deep
learning processor IP core integration
Use custom reference design functionality for custom boards and designs for deep learning processor
IP core integration. You can:

• Register a custom board to target for deep learning.
• Register a custom reference design to integrate the deep learning processor IP core.
• Specify your board and reference design by using the TargetPlatform and ReferenceDesign

properties of the dlhdl.ProcessorConfig object.

See registerDeepLearningMemoryAddressSpace, registerDeepLearningTargetInterface, and
validateReferenceDesignForDeepLearning.

Deep learning processor streaming handshake modes
In R2021b, the generated deep learning processor IP core supports streaming handshaking modes.
You can send multiple data frames to and receive multiple data frames from the deep learning

R2021b

2-2

https://www.mathworks.com/help/releases/R2021b/deep-learning-hdl/ug/generate-custom-bitstream-to-meet-custom-deep-learning-network-requirements.html
https://www.mathworks.com/help/releases/R2021b/deep-learning-hdl/ref/hdlcoder.referencedesign.registerdeeplearningmemoryaddressspace.html
https://www.mathworks.com/help/releases/R2021b/deep-learning-hdl/ref/hdlcoder.referencedesign.registerdeeplearningtargetinterface.html
https://www.mathworks.com/help/releases/R2021b/deep-learning-hdl/ref/hdlcoder.referencedesign.validatereferencedesignfordeeplearning.html

processor IP core by using buffer mode or streaming mode. See Interface with the Deep Learning
Processor IP Core.

Updates to estimatePerformance
Prior to R2021b, you could estimate performance of a network for only these bitstreams:

• zcu102_single
• zcu102_int8
• zc706_single
• zc706_int8
• arria10soc_single
• arria10soc_int8

In R2021b, you can estimate performance for your custom bitstream by using the
estimatePerformance function. Create a processor configuration by using
dlhdl.ProcessorConfig. Estimate performance by using the created processor configuration.

Estimate the performance of your network for multiple frames and for a bitstream by using the
FrameCount name-value argument of the estimatePerformance function.

For more information, see estimatePerformance.

Updates to estimateResources
In R2021b, you can use the estimateResources function to:

• Estimate the resource usage for any Xilinx® and Intel® devices that have been registered by using
a device registration function.

• Display the resource estimates as a percentage of the total resources for Xilinx devices.
• Retrieve the lookup table (LUT) utilization estimates for these devices:

• Xilinx Zynq®-7000 ZC706
• Intel Arria® 10 SoC
• Xilinx Zynq UltraScale+™ MPSoC ZCU102

Enhancements for quantization of directed acyclic graph (DAG)
networks
In R2021b, Deep Learning HDL Toolbox supports quantization of:

• Addition layers that have more than two inputs.
• Addition layer followed by ReLU, Leaky ReLU, and Clipped ReLU layers.

Deep Learning HDL Toolbox supports channel-wise quantization for depth-wise separable convolution
layers for improved accuracy of quantized network predictions.

Deep Learning HDL Toolbox supports quantization of these DAG networks:

2-3

https://www.mathworks.com/help/releases/R2021b/deep-learning-hdl/ug/interface-with-the-deep-learning-processor-ip-core.html
https://www.mathworks.com/help/releases/R2021b/deep-learning-hdl/ug/interface-with-the-deep-learning-processor-ip-core.html
https://www.mathworks.com/help/releases/R2021b/deep-learning-hdl/ref/dlhdl.processorconfig.estimateperformance.html

• GoogLeNet
• MobileNet
• SqueezeNet

Network prototyping and validation without hardware
In R2021b, you can prototype, verify prediction accuracy, and retrieve intermediate layer-level results
for your custom deep learning networks without the need for hardware. Create a simulation object by
using the dlhdl.Simulation class. Verify network prediction accuracy by using the prediction
function of the simulation object. Retrieve intermediate layer-level performance by using the
activations function of the simulation object. The dlhdl.Simulation object accepts single
data type networks, int8 data type quantized networks, and dlhdl.ProcessorConfig objects as
inputs. See dlhdl.Simulator.

Updated supported layers
Deep Learning HDL Toolbox now provides support for these layers:

• Softmax layer hardware implementation

For int8 data type quantization, Deep Learning HDL Toolbox now provides support for these layers:

• Depth concatenation layer
• Softmax layer
• Addition layer followed by ReLU, leaky ReLU,or clipped ReLU layers

Functionality being removed or changed
KernelDataType property ofdlhdl.ProcessorConfig object has been removed
Errors

This property has been removed. Use the ProcessorDataType property of the
dlhdl.ProcessorConfig object instead.

LUT property ofestimateResources function has been removed
Errors

This property has been removed as the estimateResources method reports LUT utilization by
default.

R2021b

2-4

https://www.mathworks.com/help/releases/R2021b/deep-learning-hdl/ref/dlhdl.simulator-class.html

R2021a

Version: 1.1

New Features

Version History

3

Custom directed acyclic graph (DAG) network support
Compile and deploy your custom DAG networks. Retrieve predictions from the deployed network by
using MATLAB. For a list of supported networks, see Supported Networks, Layers, Boards, and Tools.
The deep learning compiler analyzes the DAG network graph and generates the instructions, address
mapping, and schedule to run the DAG network on the new deep learning processor. Deploy larger
DAG networks onto FPGA boards with smaller resources by quantizing your DAG networks to use
int8 data types. See Quantization of Deep Neural Networks.

Performance estimation and profiling
Estimate performance by using the estimatePerformance function on the
dlhdl.ProcessorConfig object before building your custom deep learning processor. For more
information, see estimatePerformance. Retrieve the processor configuration of the shipping
(reference) bitstream, by using the dlhdl.ProcessorConfig object. See dlhdl.ProcessorConfig.
Perform design space exploration to find the deep learning processor configuration that fits your
performance requirements by comparing the performance of your custom deep learning processor
configuration to the performance of the shipping (reference) bitstream processor configuration.

You cannot estimate performance by using the estimate method for the dlhdl.Workflow object.
For more information, see “Functionality being removed or changed” on page 3-3.

Resource estimation
Estimate resource utilization by using the estimateResources function on the
dlhdl.ProcessorConfig object before building your custom deep learning processor. For more
information, see estimateResources. Retrieve resource utilization of shipping (reference) bitstreams
by using the getBuildInfo function on the dlhdl.Workflow object. See getBuildInfo. Perform
design space exploration to find the deep learning processor configuration that fits your FPGA
resource budget by comparing the resource utilization of your custom deep learning processor
configuration to the resource utilization of the shipping (reference) bitstream.

Updated supported layers
Deep Learning HDL Toolbox now provides support for these layers:

• Addition layer
• Depth-wise separable convolution layer
• Depth concatenation layer

For int8 data type quantization, Deep Learning HDL Toolbox now provides support for these layers:

• Average pooling layer
• Global average pooling layer
• Addition layer
• Clipped ReLU layer
• Leaky ReLU layer
• Depth-wise separable convolution layer

R2021a

3-2

https://www.mathworks.com/help/releases/R2021a/deep-learning-hdl/ug/supported-networks-layers-boards-and-tools.html
https://www.mathworks.com/help/releases/R2021a/deep-learning-hdl/ug/quantization-of-deep-neural-networks.html
https://www.mathworks.com/help/releases/R2021a/deep-learning-hdl/ref/dlhdl.processorconfig.estimateperformance.html
https://www.mathworks.com/help/releases/R2021a/deep-learning-hdl/ref/dlhdl.processorconfig-class.html
https://www.mathworks.com/help/releases/R2021a/deep-learning-hdl/ref/dlhdl.processorconfig.estimateresources.html
https://www.mathworks.com/help/releases/R2021a/deep-learning-hdl/ref/dlhdl.workflow.getbuildinfo.html

See Supported Networks, Layers, Boards, and Tools.

MATLAB Emulation for validate method of dlquantizer object
Validate the performance of your quantized network by comparing the prediction accuracy of your
quantized network to that of your nonquantized network, without the need for hardware by using
MATLAB emulation. See validate.

dlhdl.Workflow name-value argument pair update
For the list of name-value pair arguments that have been removed from dlhdl.Workflow, see
“Functionality being removed or changed” on page 3-3.

Updates to supported software
Deep Learning HDL Toolbox has been tested with:

• Xilinx Vivado® Design Suite 2020.1
• Intel Quartus® Pro 18.1

Functionality being removed or changed
estimate function for dlhdl.Workflow object has been removed
Errors

This function has been removed.

'ProcessorConfig' option in dlhdl.Workflow has been removed
Errors

The 'ProcessorConfig' name-value pair for dlhdl.Workflow has been removed.

3-3

https://www.mathworks.com/help/releases/R2021a/deep-learning-hdl/ug/supported-networks-layers-boards-and-tools.html
https://www.mathworks.com/help/releases/R2021a/deep-learning-hdl/ref/dlquantizer.validate.html
https://www.mathworks.com/help/releases/R2021a/deep-learning-hdl/ref/dlhdl.workflow-class.html

R2020b

Version: 1.0

New Features

4

Introducing Deep Learning HDL Toolbox: Prototype and implement
deep learning networks on FPGAs and SoCs
With Deep Learning HDL Toolbox, you can prototype and implement deep learning networks on
FPGAs and SoCs. Deploy and run deep learning networks on supported Xilinx and Intel FPGA and
SoC devices. Improve deep learning network design, performance, and resource utilization by using
profiling and estimating tools to explore tradeoffs and customize the network. Using HDL Coder™,
you can generate HDL and an IP core to target FPGAs or SoCs.

Prototype on FPGAs
Use MATLAB and fixed bitstreams to compile, deploy, and run inference for pretrained series
networks on target Intel and Xilinx FPGA and SoC boards. For more information, see Prototype Deep
Learning Networks on FPGA.

Custom series network support
Compile and deploy your custom series networks using the same fixed-bitstreams as the pre-trained
networks. For more information, see Prototype Deep Learning Networks on FPGA and SoCs
Workflow.

Portable Verilog and VHDL code
Generate portable Verilog® and VHDL® code from your series deep learning network.

Tune user-configurable parameters
Customize your deep learning network implementation by tuning user-configurable parameters such
as Thread Number, Input, and Output Memory Size. For more information, see Custom Processor
Configuration Workflow.

Custom board support
Integrate the code generated from your customized design into your reference design for deploying
to your custom board. For more information, see Generate Custom Processor IP.

Performance estimation and profiling
Gather layer-level latency and throughput estimates for your series networks. For more information,
see estimate.

Hardware Support
Prototype and deploy deep learning networks to Intel and Xilinx FPGA boards. Use Ethernet based
LIBIIO to rapidly deploy your series deep learning networks to your target Intel and Xilinx FPGA and
SoC boards. For more information, see LIBIIO/Ethernet Connection Based Deployment.

R2020b

4-2

https://www.mathworks.com/help/releases/R2020b/deep-learning-hdl/deployment.html
https://www.mathworks.com/help/releases/R2020b/deep-learning-hdl/deployment.html
https://www.mathworks.com/help/releases/R2020b/deep-learning-hdl/ug/prototype-deep-learning-networks-on-fpga-and-socs-workflow.html
https://www.mathworks.com/help/releases/R2020b/deep-learning-hdl/ug/prototype-deep-learning-networks-on-fpga-and-socs-workflow.html
https://www.mathworks.com/help/releases/R2020b/deep-learning-hdl/ug/custom-processor-configuration-workflow.html
https://www.mathworks.com/help/releases/R2020b/deep-learning-hdl/ug/custom-processor-configuration-workflow.html
https://www.mathworks.com/help/releases/R2020b/deep-learning-hdl/ug/generate-custom-processor-ip.html
https://www.mathworks.com/help/releases/R2020b/deep-learning-hdl/ref/dlhdl.workflow.estimate.html
https://www.mathworks.com/help/releases/R2020b/deep-learning-hdl/ug/libiioethernet-connection.html

Support Package for Intel FPGA and SoCs
You can use the Deep Learning HDL Toolbox Support Package for Intel FPGA and SoC Devices to
communicate with, deploy series networks, and retrieve inference results from target Intel FPGA and
SoC platforms. To download the support package, use the Add-on Explorer. For more information, see
Deep Learning HDL Toolbox Support Package for Intel FPGA and SoC Devices.

Support Package for Xilinx FPGA and SoCs
You can use the Deep Learning HDL Toolbox Support Package for Xilinx FPGA and SoC Devices to
communicate with, deploy series networks, and retrieve inference results from target Xilinx FPGA
and SoC platforms. To download the support package, use the Add-on Explorer. For more information,
see Deep Learning HDL Toolbox Support Package for Xilinx FPGA and SoC Devices.

4-3

https://www.mathworks.com/help/releases/R2020b/supportpkg/inteldeeplearning/index.html
https://www.mathworks.com/help/releases/R2020b/supportpkg/xilinxdeeplearning/index.html

	R2022a
	Generated deep learning processor IP core integration with other IP cores
	Generated deep learning processor deployment without a MATLAB connection
	Network custom layer creation, registration, validation, and deployment
	Updates to deep learning network layeractivations results
	Updated supported layers and networks
	Functionality being removed or changed
	adder module ofdlhdl.ProcessorConfig object has been renamed

	R2021b
	Trimmed deep learning processor configuration
	Generic deep learning processor generation
	Custom reference design functionality for custom boards for deep learning processor IP core integration
	Deep learning processor streaming handshake modes
	Updates to estimatePerformance
	Updates to estimateResources
	Enhancements for quantization of directed acyclic graph (DAG) networks
	Network prototyping and validation without hardware
	Updated supported layers
	Functionality being removed or changed
	KernelDataType property ofdlhdl.ProcessorConfig object has been removed
	LUT property ofestimateResources function has been removed

	R2021a
	Custom directed acyclic graph (DAG) network support
	Performance estimation and profiling
	Resource estimation
	Updated supported layers
	MATLAB Emulation for validate method of dlquantizer object
	dlhdl.Workflow name-value argument pair update
	Updates to supported software
	Functionality being removed or changed
	estimate function for dlhdl.Workflow object has been removed
	'ProcessorConfig' option in dlhdl.Workflow has been removed

	R2020b
	Introducing Deep Learning HDL Toolbox: Prototype and implement deep learning networks on FPGAs and SoCs
	Prototype on FPGAs
	Custom series network support
	Portable Verilog and VHDL code
	Tune user-configurable parameters
	Custom board support
	Performance estimation and profiling
	Hardware Support
	Support Package for Intel FPGA and SoCs
	Support Package for Xilinx FPGA and SoCs

